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Chaotic Transformations in ~2 on a Fixed 
Number of Partitions 
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Let I2 be a region in E" and let ~ = { Pi} i%~ be a partition of I2 into a finite 
number of closed subsets having piecewise C 2 boundaries of finite ( n - l ) -  
dimensional measure. Let r: f2 ~ / 2  be piecewise C 2 on ~ where, r i= tie ' is a C 2 
diffeomorphism onto its image, and expanding in the sense that there exists 
0~ > 1 such that for any i = 1, 2 ..... m II Dr7 t ll < 0c - ~, where Dr71 is the derivative 
matrix of r - i  and I1" II is the Euclidean matrix norm. By means of an example, 
we will show that the simple bound of one-dimensional dynamics cannot be 
generalized to higher dimensions. In fact, we will construct a piecewise expanding 
C 2 transformation on a fixed partition with a finite number of elements in E2, 
but which has an arbitrarily large number of ergodic, absolutely continuous 
invariant measures. 

KEY WORDS: Absolutely continuous invariant measures (acim); ergodic; 
piecewise-C2; expanding transformation; perturbation. 

1. I N T R O D U C T I O N  

L e t / 2  be  a b o u n d e d  r eg ion  in R" a n d  let ~ = { Pi} 7~ 1 be a p a r t i t i o n  o f / 2  

in to  a finite n u m b e r  of  subse t s  h a v i n g  p iecewise  C 2 b o u n d a r i e s  of  finite 

( n -  1 ) -d imens iona l  measu re .  Le t  z ' O  ~ / 2  be  p iecewise  C 2 on  ~ where ,  

r i = zip, is a C 2 d i f f e o m o r p h i s m  o n t o  its image ,  a n d  e x p a n d i n g  in the  sense 

t h a t  the re  exists  0c > 1 such  t h a t  for any  i = 1, 2 ..... m IID~i II < 0c-t ,  w her e  

Dr~ is the  de r iva t ive  m a t r i x  of  "t" i a n d  I1" II is the  e u c l i d e a n  m a t r i x  n o r m .  

Then ,  u n d e r  gene ra l  c o n d i t i o n s  [ A d l ] ,  it can  be  s h o w n  t h a t  1: has  an  
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absolutely continuous invariant measure (acim). The result in [Adl] is a 
generalization of the results proved in [ Jab ], [ Kel ], [ Can ] and [ G-B ]. 

In this note, we investigate the problem of finding an upper bound on 
the number of acim's for higher dimensional transformations. 

For one-dimensional transformations [ Li-Y], r: I ~ / ,  I = [ 0, 1 ], it is 
well known that the number of discontinuities of r'(x) provides an upper 
bound for the number of independent acim. This result has been improved 
in [ Boy], [Pia],  [ B-HI and [ B-B ]. The key to all these bounds lies in the 
fact that invariant densities for piecewise C 2 expanding transformations are 
of bounded variation. In one dimension, a density of bounded variation is 
bounded and it can beproved that its support consists of a finite union of 
closed intervals. A simple argument then shows that at least one point of 
discontinuity of r' must lie in the largest closed interval, which will provide 
an upper bound on the number of acim. In higher dimensions, the much 
more complicated geometrical setting and the complex form of the defini- 
tion of bounded variation [ Giu] do not permit an easy generalization of 
the one-dimensional result. For example, in two dimensions, the variation 
in one direction is integrated along the other direction. It is this integration 
which allows a function of bounded variation in R" to be unbounded and 
its support to be devoid of interior. 

In general, dynamical systems can have a large set of invariant 
measures. For example, higher dimensional point transformation models 
for cellular automata [ G-B2 ], can have many acim. 

In 1990, G6ra, Boyarsky and Proppe [G-B-P],  outlined the possi- 
bility of constructing a piecewise expanding C 2 transformation on a fixed 
partition in ~2 with a finite number of elements which has an arbitrarily 
large number of ergodic acim. There the use of certain triangles having a 
particular geOmetry as the supports of an ergodic acim is suggested. By 
means of a sketch, it is outlined (without proof, however) that it is possible 
to take care of the trapezoidal regions between triangles satisfying all con- 
ditions. Although the conjecture turns out to be correct, we will see that 
the construction cannot be done in a simple manner. 

We use the triangles suggested in [G-B-P] as supports of ergodic 
acim. For the trapezoidal regions between the triangles, we use another 
set of triangles which are not supports of acim, satisfying the following 
conditions: 

(1) The triangles are mapped in an expanding manner similar to that 
of the triangles which are supports of ergodic acim, and 

(2) the intersection of images of triangles which are supports of 
ergodic acim and images of triangles which are not supports of ergodic 
acim is empty. 
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This reduces the trapezoidal regions to rectangular regions. We will then, 
by the aid of Lemma 1, map each such rectangular region to a "tube" in 
a C 2 and expanding manner in such a way that the tube does not intersect 
the images of the triangles that support the ergodic acim. 

Finally, by making small perturbations to these maps near the 
"vertical" edges of these rectangular regions, we can obtain a map that is 
C 2 and expanding on all of S, (respectively S l) (see Fig. 2). 

M A I N  R E S U L T S  

We will construct a piecewise expanding C 2 transformation on a fixed 
partition with 10 elements which has an arbitrarily large number of ergodic 
aeim. 

L e m m a  1. For L > 0  large enough, there exists an expanding C 2 

diffeomorphism of a rectangle R with sides L and 1 into a tube 9- similar 
to the one shown in Fig. 1. 

R e m a r k .  Although this may seem obvious, the point of this note is 
to provide a complete proof of the main result. 

Proof. 
satisfying 

Let P be a C 2 function defined on an interval [Xo, L + x0] 

P(xo)=O, P ( L + x o ) = - l ,  P ' ( x o ) = l ,  P ' ( L + x o ) = l  (1) 

The graph of P is a curve of length 0eL, for some 0c > 1,which we also 
denote by P. We parametrize P by arc length s = 0oc: 

where 

and 

x ~  (u(~x), v(o~r)), 

v(s )=Pou(s )  (2) 

u'2(s) + de(s )= 1 (3) 

We shift the curve P along the u-axis: (u(0c, c), v(~,c)) ~-* ((1 + u(~x), v(ocx)). 
The mapping of the rectangle R to the tube :"  is constructed by moving 
along the curve P a distance of ~x and then along its upward normal vector 
a distance of ~/~ y for each point (x, y)~ R" 

Let ff be the upward normal vector to the curve P, i.e, 

if(s) = (n,(s), n2(s)) = (--v'(s), u'(s)) (4) 
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(0,1) (L,O) 

( t , O )  ~ ( L  + ~,_~) 

Figure 1 

To derive an expression for ~ in terms of P, first differentiate (2) with 
respect to arc length s, which implies that 

v'(s)=p'ou(s)u'(s) (5) 

Using (5) in (3), we get 

1 P'ou(s) 
u'(s) = v'(s) = (6) 

x/1 +(P'ou(s))  2 ~/1 +(P'ou(s))  2 

Now using (6) in (4), we get 

( - P, o u!s_) ) 
if(s) = (n~(s), n2(s))= x/1 + (--p,o u(s))2, ~/1 + (P'o u(s)) 2 (7) 

Now note that the width of the tube in the direction of ff is x/~; the 
transformation maps vertical sections of [ xo, L + Xo ] x [ 0, 1 ] linearly onto 
segments in the ff direction. Therefore the two-dimensional transformation 
z from the rectangle to the tube is given by 

v(x, y ) =  (1 + u(otx) + ~ yn,(s), v(oc'r + ~'2 yn2(s)). 

Thus, the Jacobian matrix of r is 

~n 1 
~/'/t(s) ~ ~/~ Y ~ x  ~ n l(s) 

Jr = 0/,/2 (8) 
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Calculating On l/63x and 63r12/f3x in terms of P and its derivatives, using 
(7), we obtain 

- ~ P "  u '  - ~ P "  �9 P '  u '  On I o U �9 O n  2 o U o U �9 

b x - ( 1  + (P' ou)2) 2 0 x  (1 + ( P '  ou)2) 2 (9) 

where the independent variable s = ~x is suppressed for notational simplicity. 
The unit tangent vector 7 ~ at the point (u, v) of the curve P is: 

~ ' = ( u ' , v ' ) = ( u ' , P ' o u . u ' ) .  

Recall that the curvature x (which we define to be non-negative) is 
given by 

x2 dT 2 
=-a-7 

where 

d T  
-~-s = (u", p 'o  u. u" + p"o u. (u')2). 

Thus, we have 

K,2 -- 
d7 ~ 

Ts 
2 

= u "2 + (P 'o u. u" + P"o u(u')2) 2 (10) 

Using (6), we get 

-P"ouP'ou.u' (P" oU) 2 
U n - -  K 2  = 

( 1 + (P 'o  U)2) 3/2 and ( 1 + (P '  o u)2)  3 ( 1 1 )  

Thus 

IP"ou(s) l  
x(s)  = ( 1 + (P' o u(s))2) 3/2 (12) 

We express Onl/OX and On2/Ox in terms of x in the case P " >  0 (respec- 
tively P" < 0): 

an i _ an 2 
OX -- + ~ x . n 2  OX = +_~x-nl (13) 
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Using (13) in (8), the Jacobian matrix of r becomes 

Jr i + yxn , ) f i  

Using (4) and (5) it follows that 

j =u,(s)(,13P,]3 - ~ 2  P'ou(s)) 
o.(s) 

where f l=0c(1-T-v~yx) for P " > 0  (respectively P" <0).  Therefore, the 
eigenvalues of the Jacobian matrix will be 

- -  

2 ~/I + (p'o u(s)) 2 
((fl + ,v~)__. J ( p -  V/-2)2 -- 4 ~ fl(p'o u(s))2). 

Now we note that if ( f l -  ,r < 4 , r  fl(p'o u(s)) 2, then the eigenvalues 
are complex and 

1,1.1 = l _.l = 2 ~/I + (p'o u(s)) 2 

x J (~  + ~v/~) 2 + 4 ~ ,8(P'o u(s))Z _ (fl _ v/~)z ' 

and if ( f l -  ~v~) 2 >t4 ,v~ fl(p'o u(s))'-, then the eigenvalues are real and 

J2mi. i = 2 ~/i + (P' o u(s)) 2 
((~ + v/2)- V/(fl- V/'2)2 - 4 ~ fl(p'o u(s))2). 

For 1.001 <f l  < 1.45 and 0 ~< [p'o u(s)l ~< 1.05 both eigenvalues are 
strictly greater than 1 in absolute value, i.e. the mapping of the rectangle 
to the tube is expanding. F1 

Let R-~  (respectively ~- -~)  denote the reflection of R (respectively 9-) 
about the x-axis. Let 9 -v = reflection of 9- about the vertical line x = 
L/2 + Xo and ~- - ~ = (J-~) - ~ = (9- - l)~. 

Note that the construction of ~- -~  from R -~ is isometric to the 
construction of f f  from R. 

We now give an example of a function P which satisfies the criteria of 
Lemma 1, and which will be used in a later construction. 
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Example 1. L e t  

L 2z~ 1 zc 1 
e(t) = ~  sin - ~ - ( t -  1) + ~ c o s  ~ ( t -  1 ) - ~  

where L is to be determined later, and 1 ~< t ~< L + 1. Then: 

2zt 7r z~ 
P'(t)=cos--~(t-  1 ) - ~  sin ~ ( t -  1) 

We note that P( 1 ) = 0  P(L + 1 ) = - 1 and P'( 1 ) = P'(L + 1 ) = 1 (i.e., 
Eq. ( 1 ) is satisfied). 

Also note that, 

- 2 ~ z  . 2to 7~ 2 
P"( t )=  L sln-~--( t-  1 ) - ~ - s c o s z ( t -  1) 

We have the. following estimates for x: 

zc 2zc n2 4nL + ~2 
[P'(t)l < 1 +~-s x ~< Ie"(t)l ~<-Z-+ 2L---5 = 2L 2 

The amount of expansion applied to the line to produce the curve P 
is given by: 

1 f t + '  x/1 +p,2(t) d t (X-- '~ ! 

It is easy to see that for L>~ 100, fl~(1.1, 1.33) and IP'I < 1.039; there- 
fore, if we choose L i> 100 then both eigenvalues will be larger than 1 in 
absolute value. 

By Apqr we denote the triangle with vertices at the points p, q and r, and 
by VI pqrs we denote the rectangle with vertices at the points p, q, r and s. 

We are now ready to establish the main result: the construction of 
arbitrarily many ergodic acim for a piecewise expanding C 2 transformation 
in R 2 on a fixed partitition. The idea in [G-B-P] of using triangles as 
ergodic sets of aeim is essential in this construction. 

Theorem 1. For any number k there exists a two dimensional 
piecewise C 2 expanding transformation with 10 elements which has at least 
k ergodic acim. 

Proof. We prove the theorem by the means of a construction. Con- 
sider the following 10 elements partition of I2: where E(k)= 2k + 1 + 2kL 



544 Adl-Zarabi and H. Proppe 

(t,:) 

& 

S - x  

/,,-~ PU 

Figure 2 

(CtCk), =) 

(tCk),~) 

and L is to be determined later, where z is large enough so that for every 
(x, y) ~ ~ defined in Lemma 1 we have y ~< z. 

Let P~=D(1,1)({(k),l)((r z) and P-~ be its reflection 
about the x-axis. Each PJ is subdivided into 4 rectangles P[ for 1 ~< i ~< 4 
and j = - 1, 1 as shown in Fig. 2. The exact manner of subdivision is irrele- 
vant. Let ~(P{) = P J, 1 ~< i <~ 4 where r maps each rectangle P/ l inear ly  onto 
the large rectangle PL 

Thus, it remains to define r on S~ and S_~ (see Fig. 2 for definition 
of S~ and S_ l). Now we define the sets E~ for 1 ~< i ~< 2k + 1 on S~ w S_ 
which are the sets that will produce supports for the k + 1 ergodic aeim. 

o l l J ( a i , j )  and b / -  Let E~=Aa~b~b i- where, a~=(i-1)L+i-1,  a g =  
(a i+  1,j) fo r j~  { - 1 ,  0, 1} and 1 <<.i<~2k+ 1, we also define c~ = (a~+2, 0) 
1 ~< i ~< 2k, see Fig. 4. 

We define the triangles which are the supports of ergodic aeim as 
follows: 

T[=E, nSj 1 <~i<~2k+ 1, / ~ { 1 , - 1 }  

see Fig. 3. 
Let R~= if]a7 ~a~zb:b -~ . We define the triangles which are not 

supports of ergodic acim as follows: 

7"{=(R~nSj)\E~ 2 ~ < i ~ 2 k +  1, j ~  { - 1 ,  1} 

see Fig. 3. 

~.t T x 

�9 I 1 
~gl TC 

" 1  

Figure 3 
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S-a 
,o �9 

. x  

E2k-~+= E~k-i+2 

Figure 4 

For 1 ~< i ~< 2k let E t = / X b 7  ~ b~ c ~ see Fig. 4. Let 

t(k) ), 
vj = j ( _  iL + L -  i) 

- 1  1) 
M 1 -  1 1 ' 

- 1  - 1 )  
M _ l  = - 1  1 

Then for a point p ~ Rg ~ Sj we define 

z( p ) = vj + M s . p 

Then 

z(T{) = Ezk- ,+  2 and z(7"{) = Ezk- ,  + 2 

and 

v(b/~ = a2~ 2 z ( a ~  z(b{)=bJ2k_,+2 v(a[)=c~k_,+2 

see Figs. 3 and 4. 
Note that in this construction z is continuous across the boundaries 

between the triangles, since r is an affine map on Ri c~ Sj = T / w  7"[. 

R e m a r k  1. 

in Lemma 1. 
J correspond to Y and R In what will follow Y'{ and ~ 

�9 " j v  Let ~ Y =  Ob~ a~ a]+ l i 1 b [, and define z (~  [) = #" 2 k  - -  i + 2 (see Lemma 1 
and Fig. 5). 

We note that the condition P'(xo)= P'(L + x0)=  1, together with the 
construction of z(x, y) in Lemma 1, is used to glue the pieces of z together 
in a continuous manner, since the construction was defined so that for each 
rectangle, the map z of Lemma 1 and the affine maps defined on the adjacent 
triangles match on the common vertical sides. This guarantees that z is C O 
on all of S1 (respectively S_  1). We also note that z is C 2 and expanding 
on all of S~ (respectively S_l ) ,  except on the common boundaries of 
triangles and rectangles, for the following reasons: 

822/'89/3-4-5 
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"(~,'+,) = ~.-,+~ 

�9 CT:) = a--i+: 

Figure 5 

(1) riR,~sj, rl.~/and riR,+n~Sj a r e  C 2 on the closure of their domains 
(Ric~Sj, ~1 ji and Ri§ 1 c~Sj respectively) and coincide on R~c~Sjn~l{ and 
Ri+ l :~S:n~: i. 

(2) rIR,:~s: and rlR,+~:,sj are affine maps with expansion constant equal 

to V/2, and ri.~{ is expanding by Lemma I and Example I for L > I00. 

Now for each 1 ~< i ~< 2k + 1 and j = - 1 ,  1 we perturb r slightly in ~ [  
near its vertical edges so that the resulting map is C 2 and expanding on all 
of Sj. We use Theorem 2.5 in Chapter 2 of [Hir] ,  after a slight modifica- 
tion of r. Given ~ i  and the triangles T[ (resp. 7"{+ 1) adjacent to it on the 
left (resp right), and given e > 0, we first extend the maps on the triangles 
to a small portion of each end of :~[ as follows. Let ~ [  = [ 0, L]  x [0, 1 ] 
(in local coordinates); we redefine r on ((O,e)x[O, 1 ] ) w ( ( L - e , L ) x  
[0, 1 ]) to be simply the (affine) maps on the respective triangles. The 
reason for this extension is that we do not want to perturb the mapping on 
the triangles; the extension ensures that the points where r fails to be C 2 
are a positive distance from the boundaries of the triangles. We now 
redefine the map r of Lemma 1 so that the domain is [e, L - e ]  x [0, 1 ] 
instead of [0, L]  x [0, 1 ] (still in local coordinates). We note that doing 
this does not change the validity of Lemma 1, although the map r is slighly 
perturbed. It is clear from the construction in Lemma 1 that the resulting 

-J  is con- map (also denoted by r) on the domain D{=~l{w T]w Tt+ l 
tinuous, but in general fails to be C 2 on the line segments { e} x [ 0, 1 ] and 
{ L -  e} x [ 0, 1 ]. To apply the theorem, we work with the smaller rectangle 
A{=[�88 L- �88  1]. Let U= (O, L) x ( - �88 1 +�88 Then Ui s  open 
and Q D U D A ~. We extend r to U so that the extended map (which we 
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still denote by t) is C 2 except possibly on a subset of { e , L - e }  x 
( ! - z  e, 1 + �88 This can be done because the map r of Lemma 1 could have 
been defined in precisely the same way on a slightly thicker rectangle. The 
actual extension is immaterial; once we have applied the theorem, we restrict 
the perturbed map to the domain D J; and restore the original definition of 
r on the portion of U outside of this domain. Now let K=([�89 
[L-ae,  L--�89 1]. Let W=((ae, ~e)w(L-5e,  L-3e))(- �88 1 +�88 
We note that r is C 2 on a neighbourhood of K -  W. The conditions of the 
theorem are thus satisfied, so that for any neighbourhood Jff c C~ U, ~ )  
of t there is a map 17 which is C 2 on a neighbourhood of K and which 
equals t on U - W ( h e r e  C~ f2) denotes the space of continuous func- 
tions from U to f~, the interior of f2, with the strong topopology). Since t 
itself is already C 2 on U -  W, these two properties imply that ~ is C 2 on 

2)c~ W). Thus all of A i! (in fact on U, except possibly on a subset o f ( U - A ~  
g 

the restriction of f to A/,  together with the undisturbed map on the 
remaining portion of the domain D/,  is C 2 on the entire domain. For a 
suitably small e and for f sufficiently close to t, it is clear that the C 2 map 
"~[O/ is also expanding on all of D[. 

To complete the proof let 

~. -- E i  LJ E2k _ i + 2 for 1 <~ i <~ k + 1 

Then by the above construction, we have r(8/)=8, .= r- t(gi) ,  for 1 ~< i ~< 
k + 1, so each ~. is an invariant set of positive Lebesgue measure. On each 
~., r is piecewise expanding and onto. By [Man, Chapter III, Theorem 
1.3 ], each ~. supports exactly one ergodic acim. Since there are k + 1 dis- 
tinct r the proof is complete. El 

ACKNOWLEDGMENTS 

We are grateful to P. G6ra for many helpful suggestions. We are also 
grateful to a referee for several useful remarks. The research of K.A.Z. was 
supported by NSERC and ISM. 

REFERENCES 

[Adl] 

[Bla] 

[Boy] 

K. Adl-Zarabi, Absolutely continuous invariant measures for piecewise expanding 
C 2 transformations in R" on domains with cusps on the boundaries, Ergodic Theory 
& Dynam. Syst. 15:1-18 (1996). 
M. L. Blank, Metric properties of e-trajectories of dynamical systems with 
stochastic behaviour, Ergodic Theory & Dynam. Sysr 8:365-378 (1988). 
A. Boyarsky, A bound on the number of invariant measures, Can. Math. Bull. 
24( 1 ):123-124 (1981). 



548 AdI-Zarabi and H. Proppe 

[B-B ] A. Boyarsky and W. Byers, A graph theoretic bound on the number of independent 
absolutely continuous invariant measures, J. Math. Anal, Appl. 139( 1): 139-151 
(1989). 

[ B-H ] A. Boyarsky and G. Haddad, A result related to a theorem by Pianigiani, Proc. Am. 
Math. Soc. 82(4):538-540 (1981). 

[ Can ] D. Candeloro, Misure invariante per transformazioni in piu dimensionii, Atti Sem. 
Mat. Fis. Univ. Modena XXXV:32-42 (1987). 

[ Giu ] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkh/iuser (1984). 
[G-B1 ] P. G6ra and A. Boyarsky, Absolutely contiuous invariant measures for piecewise 

expanding C 2 transformations in R n, Israel J. Math. 67(3):272-276 (1989). 
[G-B2] P. G6ra and A. Boyarsky, Higher dimensional point transformations and 

asymptotic measures for cellular automata, Comput. Math. Appl. (1989). 
[G-B-P] P. G6ra, A. Boyarsky and H. Proppe, On the number of invariant measures for 

higher-dimensional chaotic transformations, J. Stat. Phys. 62(3/4) 709-728 (1991). 
[Hir] M.W. Hirsch, Differential Topology, Springer-Verlag (1976). 
[Jab] M. Jabtofiski, On invariant measures for piecewise C2-transformations of the 

n-dimensional cube, Ann. Polon. Math. XLIII: 185-195 ( 1983)~ 
[ Kel] G. Keller, Proprietes ergerdiques des endomorphismes dilatants, C z par morceaux, 

des regions bornees du plan, Thesis, Universite de Rennes (1979). 
[ Li-Y] T.-Y. Li and J. A. Yorke, Ergodic transformations from an interval into itself, Trans. 

Am. Math. Soc. 235:183-192 (1978). 
[ Man ] R. Mane, Ergodic Theory and Differentiable Dynamics, New York, Springer-Verlag 

(1985). 
[ Pia ] G. Pianigiani, First return maps and invariant measures, Israel J. Math. 35( 1-2):32- 

48 (1980). 


